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Introduction

In our work [1] we described canonical and boundary representations of the group
G = SU(1,1) on the Lobachevsky plane D in sections of linear bundles on D. Now we
decompose these representations into irreducible ones. We lean on works [2], [3].

1. Representations of SU(1,1) induced by characters of U (1)

The Lobachevsky plane is the unit disk D : 2Z < 1 on the complex plane with the
linear-fractional action of G':

az+b a b R
zn—>z-gsz+a, g(l—) a), aa — bb = 1.

The boundary S of D is the circle 2z = 1, it consists of points s = expia, the measure
ds on S is do. Let D be the closure of D: D =DUS. Let

p=1-—2Z,

so that D = {p > 0} and S = {p = 0}. The stabilizer of the point z = 0 is the maximal
compact subgroup K = U (1) consisting of diagonal matrices:

a 0 _
k—(o E)’ aa =1,
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so that D = G/K. The Euclidean measure dxdy on D is (1/2)dpds, a G -invariant
measure du(z) on D is
du(z) = p~2dxdy.

If M is a manifold, then D(M) denotes the Schwartz space of compactly supported
infinitely differentiable C-valued functions on M, with a usual topology, and D’(M) denotes
the space of distributions on M — of antilinear continuous functionals on D(M).

Recall principal non-unitary series representations of GG trivial on the center. Let o € C.
The representation 7T, acts on the space D(S) by

(T5(9)@)(s) = (s - g)|bs +al*.

The inner product from L?(S,ds):

(W, )s = / () p(w)ds(u) (11)

is invariant with respect to the pair (7,,75_1).

If o ¢ 7Z, then T, is irreducible and equivalent to 7_,_; (for o € Z there is a "partial
equivalence").

The following operator A, acts on D(S) and intertwines T, and T ,_;:

)= [ 1= sl ) du

" are eigenfunctions for A, with eigenvalues a,(o):

exponents ¥,(s) = s

P(—20 — 1)
[(—o+n)l'(—c—n)’

an (o) =2m (—=1)"

The composition A,A_,_1 is a scalar operator:

1

AA_, 1=
T 2nw(0)

K

where w(o) is a "Plancherel measure" (see Theorem 1.1):

1

1
502 <a + 2) cotom,

w(o) =
The operator A, is meromorphic in o with simple poles at 0 € —(1/2) + N

There are four series of unitarizable irreducible representations: the continuous series:
T,, 0 = —(1/2) +ip, p € R, an inner product is (1.1); the complementary series: T,
—1 < ¢ <0, an inner product is the form (A,v, p)s with a suitable factor; the holomorphic
and antiholomorphic series consisting of subfactors 7, + of T,, o € Z.
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We shall use denotation:
Z m
Z‘U”m:|2|‘u(ﬂ> ; ,UG(C, m € 7.
z

Let us take characters (one dimensional representations) of the group K that are trivial on
the center +F, namely,

wm(k) =a"" =a?", ke K, meZ.

Denote by U™ the representation of the group G induced by the character w,,. It acts
by translations on the space DU (G) of functions ¢ € D(G) satisfying the condition
W(kg) = wm(k) ¥ (g). It can be realized on functions on the disk D'

(U™(9)f) (2) = (= - g) (b2 + )",

The representation U™ moves the Casimir element of the Lie algebra g to the Casimir
operator (a differential operator on D). Its radial part is the following differential operator
on [1, 00):

d—2 + 2c 4 + 2’
dc? de  c+1

The representation U™ preserves the inner product

Ly =(c*—1) (1.2)

W= [ FGIRE du(a)
We denote the unitary completion of U™ acting on L?(D,dp) by the same symbol.

Let D(D) be the space of restrictions to D of functions from D(C) with the induced
topology, and by D’(D) the space of distributions on C with supports in D. Consider the
inner product with respect to the Lebesgue measure on D':

(F,f)D:/DF(z) (2)dxdy, z=z+1y. (1.3)

The space D(D) can be embedded into D'(D) by assigning to h € D(D) the functional
fr(h, fdp, f € D(D). So we shall write the value of F € D'(D) at f € D(D) in the
same form: (F, f)s.

We define the Poisson transform P.™ : D(S) — C*°(D) and the Fourier transform
F™ . D(D) — D(S), associated to the character wy,, as integral operators

(Pém)cp) (z)=p~° /5(1 — 5Z)277M g™ () ds.

(E™ f) (s) = 57 / (1= 52727y f(2)du(2).

D
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The Poisson and Fourier transforms P.™ and F.™ intertwine representations T , ;

with U™ and U with T, respectively. The Poisson and the Fourier transform are
conjugate to each other:

<F(£m)fv 90>S = (fv Pﬁ(m)gp)du-

Using the spectral resolution of the radial part of the Casimir operator (1.2), we obtain
the following Plancherel theorem for U™,

Theorem 1.1. Let us assign to a function f € D(D) the family {Fgm) f} where
o=—1/2+1ip, p € R, of its Fourier components of the continuous series and the family
{Fkgm), f} where k=0,1,...,|m|—1, of its Fourier components of the analytic (if m <0 )
or the anti-analytic (if m > 0 ) series. This correspondence is G -equivariant. One has the
wnversion formula:

e = [ " wlo) (P ) D))

o0

fm[—1

+ Y 55 R (P R ().
k=0
and the Plancherel formula for functions f,h € D(D) :

G = [ wlo) (FS L EEWs], sy, do

o0

m|—1

1 m m
+ > 2—7T2(F,§ f FT R, (1.4)
k=0

Therefore, the previous correspondence can be extended from the space D(S) to L*(D, du)
and gives then the decomposition of the unitary representation U™ on L*(D, du) into
the direct integral of the representations T,, 0 = —1/2 + ip of the continuous series, and
the direct sum of |m| representations Ty, or Ty, _, k=0,1,...,|m| —1, of the analytic
(m > 0) or anti-analytic (m > 0 ) series. This decomposition is multiplicity free.

2. Canonical representations

Let A € C. We define the canonical representation Ry ,, of the group G associated with
a character of K as follows:

(Ram(9)f) (2) = f(z - g) (bz + @) "2,

it acts on the space D(D).
The inner product (1.3) is invariant with respect to the pair (Rxm, R 5 5,,):

<R)\,m(g)fa h>D = <f7 R—X—Q,m(g_l)h>Da g € G. (21)

Let us define the operator Q,,, — first on D(D):

(Qrmf) (2) = c(A\,m) / (1 — 2w)***™ f(w)dudv,

D
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where ) )
c(\,m) = —Atm-t

T
It intertwines R),, and R_x_a,,:

Q)\,m R)\,m(g) = R—)\—Q,m(g) Q)x,mu g & Ga
and interacts with the form (1.3) as follows:
(@amf, h)p = (f, @x I)p- (2.2)

The formulae (2.1) and (2.2) allow to extend the representation R) ,, and the operator @y,
to the space D'(D) of distributions on D.

Canonical representations R,, generate boundary representations Ly, and M) .

Consider the Taylor series of f € D(D) in powers of p:
f2) ~ao+arp+anp’+---

where ap = ax(s) are functions in D(S):

w0 (5)

Let a(f) denote the column (ag,as,...) of the Taylor coefficients.

Denote by 34 (D) the space of distributions on C concentrated at S and of the form

¢ =w0(s)d(p) +¢1(5)0'(p) + -+ puls) 8V (),

where d(p) is the Dirac delta function on the real line (being a continuous linear functional
on D(R)) and §VY)(p) its j-th derivative. Set

2(D) = UpZo Zi(D).
There is a natural filtration
Yo(D) € X1(D) C S9(D) C - - (2.3)

A distribution (s) 0% (p) acts on a function f € D(D) as follows:

1

(9(5)00), f)p = 5(~1)' (g, as. (24)

Distributions from Y;(D) can be extended to a wider space than D(D). Namely, let 7;(D)
be the space of functions f on D of class C*® on D and on S and having a Taylor
decomposition of order k:

f(2) = ag + ar1p + asp® + ... + app® + o(p")
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uniformly with respect to u € S, where a,, = a,,(f) belong to D(S). Then (2.4) is well
preserved for f € Ti(D).
The canonical representation R, ,, acting on D’(D), preserves the space X (D) and the

filtration (2.3). The first boundary representation Ly ,, is the restriction of Ry, to X (D).
The second boundary representation M), acts on columns a(f) by:

M)\,m(g) a(f) = a(RA,m(g)f)'

Theorem 2.1. The representation Ly ,, 1is equivalent to a upper triangular matriz
with diagonal T_x_1, T_x, T_xi1,.... The equivalence is given by multiplication of the
functions @i(s) by s™™. The representation M), is equivalent to a lower triangular matric
with diagonal T_y_o, T x_3,.... The equivalence is given by multiplication of the Taylor

m

coefficients ay(s) by s~ ™.

Let N = {0,1,2,...}. In the generic case: 2\ ¢ N, the representation L,,, is

diagonalizable, which means that the space X (D) is the direct sum of the spaces
V)\(T,?) (k € N), so that Ly, is the direct sum of the T_,_144 (k € N).

3. Poisson transform

Let A\, 0 € C and m € Z. We define the Poisson transform associated with the canonical
representation Ry, as the map PA(TZ) : D(S) — C*°(D) by the following formula

(PSZ) go) (2) =p 772 /S(l — 5%)2 72 g p(5) ds.

The Poisson transform P/\(TZ) intertwines the representations 7_,_; and the canonical

representation Ry, :

Ryml(g) P\ = P\ T, _1(g) (g € G).

With the intertwining operators A, and @) ,, the Poisson transform interacts as follows:

PA(TZ) Ay, = a_p(o) Pim)

,—o—1?

Qi P = A™ (N a)PTY,

where

AN, o) = T(—A_Jrrz) I(=A-0-1)

I'(=A JT(=A+m—1)"
The Poisson transform P/s,ma) is meromorphic in ¢, and has poles at the points
o=A—k, o=-A—1+1 (k,1l€eN). (3.1)

All poles are simple except in the case when the two sequences (3.1) have a non-empty
intersection and the pole belongs to this intersection. This happens when 2\ + 1 € N and
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0<k,l<2\+1, k+1=2\+1. In this case the pole pu is of the second order. Let us write
down the principal part of the Laurent series of P>(\,a) at the poles p of the first order:

The residue intertwines 7, _; with R, ,,. Let us write it explicitly. We set
Vomn(p) = (1 — p)(m+n)/2 F(o+1+m,0+1+n;20+2;p),

where F' is the Gauss hypergeometric function. Expand V' in powers of p:

O'mn Zw
(m)

here w, ,’ are polynomials in n of degree k. The coefficients of these polynomials are
rational functions of ¢ with simple poles. Now we set

Wé,k) = wg,k) (T _) .

1 da

If a pole p belongs only to one of the sequences (3.1), then it is simple and

S(m m 1 m
P){,)\)—k = (_1>k+ —a-m(A — k) §§7k)a

Ko™
»(m m 1 m
P>(\,—))\—1+l = (=" il g\,l) o Axi,

where 5/(\7,? is the following operator D(S) — %,(D):

& o= s Z 1 (0 ()5 ). (3.2)

The operator 5%) is meromorphic in A. For fixed k = 1,2... it has k poles (simple)
at the points A =k — 1,k —3/2, k —2,...,(k—1)/2. It intertwines T_,_14 with Ly,
(restricted to ¥(D)).

Theorem 3.1. Up to a factor, the composition of the operators Qx,, and 5/(\772) 15 the

: (m) .
Poisson transform P_,\_2,,\_k-

(m)
kaé,\k = )\k ) P—,\—z,,\—kn
where

m 1 m
A} =5 (CDF R asn (A = 1 R) AT (),

i 1 [A+m+ 1IN —m+2)
A0 = = 55 @A =2+ 1) =

272
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4. Fourier transform

Let A\, 0 € C and m € Z. We define the Fourier transform associated with the canonical
representation Ry, as the map F in;) : D(D) — D(S) by the following formula

<F§7Z)f) (s)=s™ /D(l — 23)%2M A f(2)dxdy.

The integral converges absolutely for Re(A — o) > —1, Re(A + o) > —2 and can be
meromorphically continued in ¢ and A. The Poisson and the Fourier transform are conjugate
to each other:

(F\Df, e)s = (f, P, _obp. (4.1)
This allows to transfer statements about the Poisson transform to the Fourier transform.
The Fourier transform interacts with the intertwining operators as follows:

A, F)STZ) = a_p(0) FA(@UA,
Fy Qam = A 0) F.

It has poles in ¢ at the points
o=-A—-2—-k, o=X+1+4+1 (kIleN). (4.2)

All poles are simple, except the case —2A—3 € N and the pole 1 belongs to both sequences
(4.2),i.e. 0 <k, l< -2 \—3 and k+1 = —2X— 3. In this case u is of the second order.
For the Laurent coefficients of the Fourier transform we use a similar notation as in case of
the Poisson transform. The first Laurent coefficient I A(ZL) for the first order p intertwines
Ry, with T),. Let us write it explicitly:

“(m 1 m m

FA(,—))\—Q—I{J = 5 (—].) a_m(_)\ - 2 - k) bg,k}’
~(m 1 m m
F)E,>21-1+l = ) (_1) Axomy bg\,l)7

where bf\rj}c) is a “boundary” operator D(D) — D(S) which is defined in terms of the Taylor
coefficients ¢, of f as follows:

The operators £€™ and b™ are conjugate to each other (up to a factor):

1

(. €5, 000 = 5 (CDFRLT (), )s.

The operator bg:'? intertwines Ry ,, with T_,_5_;. It is meromorphic in A. It has k poles
(simple) at the points A = -k —1,—-k—1/2,...,(=k —3)/2.
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5. Decomposition of canonical representations

For simplicity we restrict ourselves to generic A lying in the strips Iy, (k € Z).:

—3/2+k <Red< —1/2+k.

Case A: N € I. Let f,h € D(D). Consider the functions

folz) =2 f(2), ho(z) = p~" h(2).

Since A € Iy, both functions fy(2) and ho(z) belong to L*(D,du). Let us apply to this
pair of functions fy, hy the Plancherel formula (1.19). We obtain:

(For hoan = / (o) (E™ fo, F | ho)s dp
—oo o=—1/2+ip
|m|—1 1
£ @ D) (F fo, FS s,
n=0

Then we return to f and h:

_ [ (m) ¢ p(m)
(f,h)p = /_oow(a) (FM f F—X—2,—5—1 h)s e dp
« (m) (m)
n=0

Now usimg the conjugacy (4.1), we transfer the Fourier transform of h to the Poisson
transform of F /{";) f- We obtain a formula that gives an expansion of f regarded as a

distribution in D'(D):

= w(o) P F d
f /_oo < ) >\7_U_1 >\7U f 0'271/24’”’ p
= (m) (m)
+ n§:o 5.2 @n+1) P, By T (5.2)

Theorem 5.1. Let A € Iy. Then the canonical representation R ,, decomposes,
in a similar way as U™, see § 1, into the direct integral of the representations T,
o = —1/2 +ip, of the continuous series and the direct sum of |m| representations T, 1
or T,—, n=0,1,...,|m|—1, of the analytic (m < 0 ) or the anti-analytic series (m >0 )
with multiplicity one. Namely, if we assign to f € D(D) the family of Fourier components
{F/\(fz)f} where 0 = —1/2+ip and o € {0,1,...,|m| — 1}, then this correspondence is
G -equivariant. There is an inversion formula (5.2) and a decomposition (5.1) of the form

(.fa h)D
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Case B: \ € [;,4, k € N. We perform analytic continuation of (5.2) from the strip I
to the right, to the strip I.;. Here the poles of the Poisson transform intersect the line of
integration Reoc = —1/2 and give additional terms. We obtain

Im[-1 &

;= /m RS Gl (5.3)

where the integral and the first sum mean the same as in (5.2) and

m Uml 1 m m
™ g (pyem L (m) o pm)

! vl a_p(—A—1+v) M O LN A-140r

The operators WE\T}), v < k, can be extended to (D), because the Fourier transforms

occuring in 7'('/(\72) are already extended. Thus, the operators W&nl), v < k, are defined on the

space

Di(D) = D(D) + (D). (5.4)
The operators ng'z), v < k, acting on the space Dy(D), are projection operators onto

m)

the spaces V/\(ﬂ) , see § 2 for them, i.e. the following relations hold:

(m) _(m) __(m)

71—)\,11 7T)\,v - 7T)\,v ’
(m) _(m) _
Thw s = 0, v#s.

Thus, in Case B we have

Theorem 5.2. Let \ € Iy.1, k € N. Then the space D(D) has to be completed to the
space Dy(D), see (5.4). On this space the canonical representation Ry, splits into the sum
of two terms: the first term decomposes as R ,, does in Case A, the second term decomposes
into the sum of the irreducible representations T y_11, ~ Th_, with v=20,1,..., k. Namely,
let us assign to any f € Dy(D) the family {F)Emg)} where o = —=1/2 +ip, o = n,
n=201..../m -1, and 0 = =X —14wv, v =0,1,..., k. This correspondence is G -
equivariant. The function f is recovered by the inversion formula (5.3).

Case C: A € [ 41, k € N. Now we perform analytic continuation of (5.2) to the left,
to the strip I_,_1. Here the poles

oc=-A—2—-v,0=A+1+4+v, veN, vk,

of the integrand (they are poles of the Fourier transform) intersect the line of integration
Reo = —1/2 and give additional terms. We obtain

lm[-1 &

J = /_m £ 00, (5.5)
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where the integral and the first sum have the same meaming as in (5.2) and

m _ (_qym 1 (m) (m)
H)\,v - (_1) a_m()\ + 1+ U) P)\,)\+1+v © 5)\,11 :
m)
A+14v°
be extended to the space Ti(D) since the operators bE\T)) with v < k are defined on this

space. In particular, Hgﬁ) can be applied to Pf\fz), s < k, and we can consider the products

7 T with v, s < k.

Denote by 73/(\? the image of the operator P)S The operators Hg\? with v < k can

Theorem 5.3. The operators HE\TZ), v < k, are projection operators on 77/(\?, namely,

the following relations hold:

(m) rr(m) (m)
H/\,v H)\,U - H)\,va

HE\T;) Hgf;) = 0, s#w.
Thus, in Case C we have

Theorem 5.4. Let A\ € I,k € N. Then the canonical representation Rj
considered on the space Tip(D) splits into the sum of two terms. The first term acts on
the subspace of functions f such that their Taylor coefficients c,(f) are equal to zero for
v < k, and decomposes as Ry, in Case A, the second term decomposes into the direct sum
of the k+ 1 irreducible representations Ty o (~ Thi140 ), v =0,1,... k, acting on the
sum of the spaces 77)(:2). One has an inversion formula, see (5.5).
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