
ISSN 1810-0198. Вестник Тамбовского университета. Серия Естественные и технические науки

Том 23, № 122 2018

DOI: 10.20310/1810-0198-2018-23-122-113-124

DECOMPOSITION OF CANONICAL REPRESENTATIONS
ON THE LOBACHEVSKY PLANE

ASSOCIATED WITH LINEAR BUNDLES

c⃝ L. I. Grosheva

Tambov State University named after G. R. Derzhavin
33 Internatsionalnaya St., Tambov 392000, Russian Federation

E-mail: gligli@mail.ru

Abstract. We decompose canonical representations on the Lobachevsky plane,
associated with sections of linear bundles
Keywords: Lobachevsky plane; canonical representations; distributions; boundary
representations; Poisson and Fourier transforms

Introduction

In our work [1] we described canonical and boundary representations of the group
G = SU (1, 1) on the Lobachevsky plane D in sections of linear bundles on D. Now we
decompose these representations into irreducible ones. We lean on works [2], [3].

1. Representations of SU (1, 1) induced by characters of U(1)

The Lobachevsky plane is the unit disk D : zz < 1 on the complex plane with the
linear-fractional action of G :

z 7→ z · g = az + b

bz + a
, g =

(
a b

b a

)
, aa− bb = 1.

The boundary S of D is the circle zz = 1, it consists of points s = exp iα, the measure
ds on S is dα. Let D be the closure of D : D = D ∪ S. Let

p = 1− zz,

so that D = {p > 0} and S = {p = 0}. The stabilizer of the point z = 0 is the maximal
compact subgroup K = U(1) consisting of diagonal matrices:

k =

(
a 0

0 a

)
, aa = 1,
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so that D = G/K. The Euclidean measure dxdy on D is (1/2) dp ds, a G -invariant
measure dµ(z) on D is

dµ(z) = p−2dxdy.

If M is a manifold, then D(M) denotes the Schwartz space of compactly supported
infinitely differentiable C -valued functions on M, with a usual topology, and D′(M) denotes
the space of distributions on M – of antilinear continuous functionals onD(M).

Recall principal non-unitary series representations of G trivial on the center. Let σ ∈ C.
The representation Tσ acts on the space D(S) by

(Tσ(g)φ)(s) = φ(s · g)|bs+ a|2σ.

The inner product from L2(S, ds) :

⟨ψ, φ⟩S =

∫
S

ψ(u)φ(u)ds(u) (1.1)

is invariant with respect to the pair (Tσ, T−σ−1).

If σ /∈ Z, then Tσ is irreducible and equivalent to T−σ−1 (for σ ∈ Z there is a "partial
equivalence").

The following operator Aσ acts on D(S) and intertwines Tσ and T−σ−1 :

(Aσφ) (s) =

∫
S

|1− su|−2σ−2 φ(u) du,

exponents ψn(s) = sn are eigenfunctions for Aσ with eigenvalues an(σ) :

an(σ) = 2π (−1)n
Γ(−2σ − 1)

Γ(−σ + n) Γ(−σ − n)
.

The composition AσA−σ−1 is a scalar operator:

AσA−σ−1 =
1

2πω(σ)
· E

where ω(σ) is a "Plancherel measure" (see Theorem 1.1):

ω(σ) =
1

2π2

(
σ +

1

2

)
cotσπ,

The operator Aσ is meromorphic in σ with simple poles at σ ∈ −(1/2) + N.

There are four series of unitarizable irreducible representations: the continuous series:
Tσ, σ = −(1/2) + iρ, ρ ∈ R, an inner product is (1.1); the complementary series: Tσ,
−1 < σ < 0, an inner product is the form ⟨Aσψ, φ⟩S with a suitable factor; the holomorphic
and antiholomorphic series consisting of subfactors Tσ,± of Tσ, σ ∈ Z.
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We shall use denotation:

zµ,m = |z|µ
(
z

|z|

)m

, µ ∈ C, m ∈ Z.

Let us take characters (one dimensional representations) of the group K that are trivial on
the center ±E, namely,

ωm(k) = a2m = a−2m, k ∈ K, m ∈ Z.

Denote by U (m) the representation of the group G induced by the character ωm. It acts
by translations on the space D(m)(G) of functions ψ ∈ D(G) satisfying the condition
ψ(kg) = ωm(k)ψ(g). It can be realized on functions on the disk D :(

U (m)(g)f
)
(z) = f(z · g) (bz + a)0,2m.

The representation U (m) moves the Casimir element of the Lie algebra g to the Casimir
operator (a differential operator on D ). Its radial part is the following differential operator
on [1, ∞) :

Lm = (c2 − 1)
d2

dc2
+ 2c

d

dc
+

2m2

c+ 1
. (1.2)

The representation U (m) preserves the inner product

(f, h)dµ =

∫
D

f(z)h(z) dµ(z).

We denote the unitary completion of U (m) acting on L2(D, dµ) by the same symbol.

Let D(D) be the space of restrictions to D of functions from D(C) with the induced
topology, and by D′(D) the space of distributions on C with supports in D. Consider the
inner product with respect to the Lebesgue measure on D :

⟨F, f⟩D =

∫
D

F (z)f(z)dxdy, z = x+ iy. (1.3)

The space D(D) can be embedded into D′(D) by assigning to h ∈ D(D) the functional
f 7→ ⟨h, f⟩D, f ∈ D(D). So we shall write the value of F ∈ D′(D) at f ∈ D(D) in the
same form: ⟨F, f⟩S.

We define the Poisson transform P
(m)
σ : D(S) → C∞(D) and the Fourier transform

F
(m)
σ : D(D) → D(S), associated to the character ωm, as integral operators

(
P (m)
σ φ

)
(z) = p−σ

∫
S

(1− sz)2σ,−2m sm φ(s) ds.(
F (m)
σ f

)
(s) = s−m

∫
D

(1− sz)2σ,2m p−σ f(z)dµ(z).
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The Poisson and Fourier transforms P
(m)
σ and F

(m)
σ intertwine representations T−σ−1

with U (m) and U (m) with Tσ respectively. The Poisson and the Fourier transform are
conjugate to each other:

⟨F (m)
σ f, φ⟩S = (f, P

(m)
σ φ)dµ.

Using the spectral resolution of the radial part of the Casimir operator (1.2), we obtain
the following Plancherel theorem for U (m).

Theorem 1.1. Let us assign to a function f ∈ D(D) the family {F (m)
σ f} where

σ = −1/2 + iρ, ρ ∈ R, of its Fourier components of the continuous series and the family
{F (m)

k , f} where k = 0, 1, . . . , |m| − 1, of its Fourier components of the analytic (if m < 0 )
or the anti-analytic (if m > 0 ) series. This correspondence is G -equivariant. One has the
inversion formula:

f(z) =

∫ ∞

−∞
ω(σ) (P

(m)
−σ−1 F

(m)
σ f)(z)

∣∣
σ=−1/2+iρ

dρ

+

|m|−1∑
k=0

1

2π2
(2k + 1) (P

(m)
−k−1 F

(m)
k f)(z),

and the Plancherel formula for functions f, h ∈ D(D) :

(f, h)dµ =

∫ ∞

−∞
ω(σ) ⟨F (m)

σ f, F (m)
σ h⟩S

∣∣
σ=−1/2+iρ

dρ

+

|m|−1∑
k=0

1

2π2
⟨F (m)

k f, F
(m)
−k−1h⟩S. (1.4)

Therefore, the previous correspondence can be extended from the space D(S) to L2(D, dµ)

and gives then the decomposition of the unitary representation U (m) on L2(D, dµ) into
the direct integral of the representations Tσ, σ = −1/2 + iρ of the continuous series, and
the direct sum of |m| representations Tk,+ or Tk,−, k = 0, 1, . . . , |m| − 1, of the analytic
(m > 0 ) or anti-analytic (m > 0 ) series. This decomposition is multiplicity free.

2. Canonical representations

Let λ ∈ C. We define the canonical representation Rλ,m of the group G associated with
a character of K as follows:

(Rλ,m(g)f) (z) = f(z · g) (bz + a)−2λ−4,2m,

it acts on the space D(D).

The inner product (1.3) is invariant with respect to the pair (Rλ,m, R−λ−2,m) :

⟨Rλ,m(g)f, h ⟩D = ⟨f, R−λ−2,m(g
−1)h ⟩D, g ∈ G. (2.1)

Let us define the operator Qλ,m – first on D(D) :

(Qλ,mf) (z) = c(λ,m)

∫
D

(1− zw)2λ,2m f(w)dudv,
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where
c(λ,m) =

−λ+m− 1

π
.

It intertwines Rλ,m and R−λ−2,m :

Qλ,mRλ,m(g) = R−λ−2,m(g)Qλ,m, g ∈ G,

and interacts with the form (1.3) as follows:

⟨Qλ,mf, h ⟩D = ⟨f, Qλ,m h ⟩D. (2.2)

The formulae (2.1) and (2.2) allow to extend the representation Rλ,m and the operator Qλ,m

to the space D′(D) of distributions on D.

Canonical representations Rλ,m generate boundary representations Lλ,m and Mλ,m.

Consider the Taylor series of f ∈ D(D) in powers of p :

f(z) ∼ a0 + a1 p+ a2 p
2 + · · · ,

where ak = ak(s) are functions in D(S) :

ak(s) =
1

k!

(
∂

∂p

)k ∣∣∣
p=0

f(z).

Let a(f) denote the column (a0, a1, . . .) of the Taylor coefficients.
Denote by Σk(D) the space of distributions on C concentrated at S and of the form

ζ = φ0(s) δ(p) + φ1(s) δ
′(p) + · · ·+ φk(s) δ

(k)(p),

where δ(p) is the Dirac delta function on the real line (being a continuous linear functional
on D(R) ) and δ(j)(p) its j -th derivative. Set

Σ(D) = ∪∞
k=0Σk(D).

There is a natural filtration

Σ0(D) ⊂ Σ1(D) ⊂ Σ2(D) ⊂ · · · (2.3)

A distribution φ(s) δ(l)(p) acts on a function f ∈ D(D) as follows:

⟨φ(s) δ(l)(p), f⟩D =
1

2
(−1)l l! ⟨φ, al⟩S. (2.4)

Distributions from Σk(D) can be extended to a wider space than D(D). Namely, let Tk(D)

be the space of functions f on D of class C∞ on D and on S and having a Taylor
decomposition of order k :

f(z) = a0 + a1p+ a2p
2 + . . .+ akp

k + o(pk)
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uniformly with respect to u ∈ S, where am = am(f) belong to D(S). Then (2.4) is well
preserved for f ∈ Tk(D).

The canonical representation Rλ,m acting on D′(D), preserves the space Σ (D) and the
filtration (2.3). The first boundary representation Lλ,m is the restriction of Rλ,m to Σ (D).

The second boundary representation Mλ,m acts on columns a(f) by:

Mλ,m(g) a(f) = a(Rλ,m(g)f).

Theorem 2.1. The representation Lλ,m is equivalent to a upper triangular matrix
with diagonal T−λ−1, T−λ, T−λ+1, . . . . The equivalence is given by multiplication of the
functions φk(s) by s−m. The representation Mλ,m is equivalent to a lower triangular matrix
with diagonal T−λ−2, T−λ−3, . . . . The equivalence is given by multiplication of the Taylor
coefficients ak(s) by s−m.

Let N = {0, 1, 2, . . .}. In the generic case: 2λ /∈ N, the representation Lλ,m is
diagonalizable, which means that the space Σ(D) is the direct sum of the spaces
V

(m)
λ,k (k ∈ N), so that Lλ,m is the direct sum of the T−λ−1+k (k ∈ N).

3. Poisson transform

Let λ, σ ∈ C and m ∈ Z. We define the Poisson transform associated with the canonical
representation Rλ,m as the map P

(m)
λ,σ : D(S) → C∞(D) by the following formula(

P
(m)
λ,σ φ

)
(z) = p−λ−σ−2

∫
S

(1− sz)2σ,−2m sm φ(s) ds.

The Poisson transform P
(m)
λ,σ intertwines the representations T−σ−1 and the canonical

representation Rλ,m :
Rλ,m(g)P

(m)
λ,σ = P

(m)
λ,σ T−σ−1(g) (g ∈ G).

With the intertwining operators Aσ and Qλ,m the Poisson transform interacts as follows:

P
(m)
λ,σ Aσ = a−m(σ)P

(m)
λ,−σ−1,

Qλ,m P
(m)
λ,σ = Λ(m)(λ, σ)P

(m)
−λ−2,σ,

where

Λ(m)(λ, σ) =
Γ(−λ+ σ) Γ(−λ− σ − 1)

Γ(−λ−m) Γ(−λ+m− 1)
.

The Poisson transform P
(m)
λ,σ is meromorphic in σ, and has poles at the points

σ = λ− k, σ = −λ− 1 + l (k, l ∈ N). (3.1)

All poles are simple except in the case when the two sequences (3.1) have a non-empty
intersection and the pole belongs to this intersection. This happens when 2λ + 1 ∈ N and
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0 6 k, l 6 2λ+1, k+ l = 2λ+1. In this case the pole µ is of the second order. Let us write
down the principal part of the Laurent series of P (m)

λ,σ at the poles µ of the first order:

P
(m)
λ,σ =

P̂
(m)
λ,µ

σ − µ
+ · · · .

The residue intertwines T−µ−1 with Rλ,m. Let us write it explicitly. We set

Vσ,m,n(p) = (1− p)(m+n)/2 F (σ + 1 +m,σ + 1 + n; 2σ + 2; p),

where F is the Gauss hypergeometric function. Expand V in powers of p :

Vσ,m,n(p) =
∞∑
k=0

w
(m)
σ,k (n) p

k,

here w
(m)
σ,k are polynomials in n of degree k. The coefficients of these polynomials are

rational functions of σ with simple poles. Now we set

W
(m)
σ,k = w

(m)
σ,k

(
1

i

d

dα

)
.

If a pole µ belongs only to one of the sequences (3.1), then it is simple and

P̂
(m)
λ,λ−k = (−1)k+m 1

k!
a−m(λ− k) ξ

(m)
λ,k ,

P̂
(m)
λ,−λ−1+l = (−1)l+m 1

l!
ξ
(m)
λ,l ◦ Aλ−l,

where ξ
(m)
λ,k is the following operator D(S) → Σk(D) :

ξ
(m)
λ,k φ = sm

k∑
n=0

(−1)n
k!

(k − n)!

(
W

(m)
λ−k,n φ

)
(s) δ(k−n)(p). (3.2)

The operator ξ
(m)
λ,k is meromorphic in λ. For fixed k = 1, 2 . . . it has k poles (simple)

at the points λ = k − 1, k − 3/2, k − 2, . . . , (k − 1)/2. It intertwines T−λ−1+k with Lλ,m

(restricted to Σk(D) ).

Theorem 3.1. Up to a factor, the composition of the operators Qλ,m and ξ
(m)
λ,k is the

Poisson transform P
(m)
−λ−2,λ−k :

Qλ,m ξ
(m)
λ,k = q

(m)
λ,k · P (m)

−λ−2,λ−k,

where

q
(m)
λ,k =

1

2
(−1)k+m k! a−m(−λ− 1 + k) Λ

(m)
k (λ),

Λ
(m)
k (λ) =− 1

2π2
(2λ− 2k + 1)

Γ(λ+m+ 1)Γ(λ−m+ 2)

k! Γ(2λ+ 2− k)
.
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4. Fourier transform

Let λ, σ ∈ C and m ∈ Z. We define the Fourier transform associated with the canonical
representation Rλ,m as the map F

(m)
λ,σ : D(D) → D(S) by the following formula(

F
(m)
λ,σ f

)
(s) = s−m

∫
D

(1− zs)2σ,2m pλ−σ f(z)dxdy.

The integral converges absolutely for Re (λ − σ) > −1, Re (λ + σ) > −2 and can be
meromorphically continued in σ and λ. The Poisson and the Fourier transform are conjugate
to each other:

⟨F (m)
λ,σ f, φ⟩S = ⟨f, P (m)

−λ−2,σ
φ⟩D. (4.1)

This allows to transfer statements about the Poisson transform to the Fourier transform.
The Fourier transform interacts with the intertwining operators as follows:

Aσ F
(m)
λ,σ = a−m(σ)F

(m)
λ,−σ−1,

F
(m)
−λ−2,σQλ,m = Λ(m)(λ, σ)F

(m)
λ,σ .

It has poles in σ at the points

σ = −λ− 2− k, σ = λ+ 1 + l (k, l ∈ N). (4.2)

All poles are simple, except the case −2λ−3 ∈ N and the pole µ belongs to both sequences
(4.2), i. e. 0 6 k, l 6 −2λ− 3 and k + l = −2λ− 3. In this case µ is of the second order.
For the Laurent coefficients of the Fourier transform we use a similar notation as in case of
the Poisson transform. The first Laurent coefficient F̂

(m)
λ,µ for the first order µ intertwines

Rλ,m with Tµ. Let us write it explicitly:

F̂
(m)
λ,−λ−2−k =

1

2
(−1)m a−m(−λ− 2− k) b

(m)
λ,k ,

F̂
(m)
λ,λ+1+l = −1

2
(−1)mA−λ−2−l b

(m)
λ,l ,

where b
(m)
λ,k is a “boundary” operator D(D) → D(S) which is defined in terms of the Taylor

coefficients cn of f as follows:

b
(m)
λ,k (f) =

k∑
n=0

W
(m)
−λ−2−k,k−n (s

−mcn).

The operators ξ(m) and b(m) are conjugate to each other (up to a factor):

⟨f, ξ(m)

−λ−2,k
φ⟩D =

1

2
(−1)k k! ⟨b(m)

λ,k (f), φ⟩S.

The operator b(m)
λ,k intertwines Rλ,m with T−λ−2−k. It is meromorphic in λ. It has k poles

(simple) at the points λ = −k − 1,−k − 1/2, . . . , (−k − 3)/2.
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5. Decomposition of canonical representations

For simplicity we restrict ourselves to generic λ lying in the strips Ik, (k ∈ Z). :

−3/2 + k < Reλ < −1/2 + k.

Case A: λ ∈ I0. Let f, h ∈ D(D). Consider the functions

f0(z) = pλ+2 f(z), h0(z) = p−λ h(z).

Since λ ∈ I0, both functions f0(z) and h0(z) belong to L2(D, dµ). Let us apply to this
pair of functions f0, h0 the Plancherel formula (1.19). We obtain:

(f0, h0)dµ =

∫ ∞

−∞
ω(σ) ⟨F (m)

σ f0, F
(m)
−σ−1 h0⟩S

∣∣∣
σ=−1/2+iρ

dρ

+

|m|−1∑
n=0

1

2π2
(2n+ 1) ⟨F (m)

n f0, F
(m)
−n−1 h0⟩S.

Then we return to f and h :

(f, h)D =

∫ ∞

−∞
ω(σ) ⟨F (m)

λ,σ f, F
(m)

−λ−2,−σ−1
h⟩S

∣∣∣
σ=−1/2+iρ

dρ

+

|m|−1∑
n=0

1

2π2
(2n+ 1) ⟨F (m)

λ,n f, F
(m)

−λ−2,−n−1
h⟩S. (5.1)

Now usimg the conjugacy (4.1), we transfer the Fourier transform of h to the Poisson
transform of F

(m)
λ,σ f. We obtain a formula that gives an expansion of f regarded as a

distribution in D′(D) :

f =

∫ ∞

−∞
ω(σ)P

(m)
λ,−σ−1 F

(m)
λ,σ f

∣∣∣
σ=−1/2+iρ

dρ

+

|m|−1∑
n=0

1

2π2
(2n+ 1)P

(m)
λ,−n−1 F

(m)
λ,n f. (5.2)

Theorem 5.1. Let λ ∈ I0. Then the canonical representation Rλ,m decomposes,
in a similar way as U (m), see § 1, into the direct integral of the representations Tσ,

σ = −1/2 + iρ, of the continuous series and the direct sum of |m| representations Tn,+
or Tn,−, n = 0, 1, . . . , |m| − 1, of the analytic (m < 0 ) or the anti-analytic series (m > 0 )
with multiplicity one. Namely, if we assign to f ∈ D(D) the family of Fourier components
{F (m)

λ,σ f} where σ = −1/2 + iρ and σ ∈ {0, 1, . . . , |m| − 1}, then this correspondence is
G -equivariant. There is an inversion formula (5.2) and a decomposition (5.1) of the form
(f, h)D.
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Case B: λ ∈ Ik+1, k ∈ N. We perform analytic continuation of (5.2) from the strip I0
to the right, to the strip Ik+1. Here the poles of the Poisson transform intersect the line of
integration Reσ = −1/2 and give additional terms. We obtain

f =

∫ ∞

−∞
+

|m|−1∑
n=0

+
k∑

v=0

π
(m)
λ,v (f), (5.3)

where the integral and the first sum mean the same as in (5.2) and

π
(m)
λ,v = 2 (−1)v+m 1

v!

1

a−m(−λ− 1 + v)
ξ
(m)
λ,v ◦ F (m)

λ,−λ−1+v.

The operators π
(m)
λ,v , v 6 k, can be extended to Σk(D), because the Fourier transforms

occuring in π
(m)
λ,v are already extended. Thus, the operators π(m)

λ,v , v 6 k, are defined on the
space

Dk(D) = D(D) + Σk(D). (5.4)

The operators π
(m)
λ,v , v 6 k, acting on the space Dk(D), are projection operators onto

the spaces V
(m)
λ,v , see § 2 for them, i.e. the following relations hold:

π
(m)
λ,v π

(m)
λ,v = π

(m)
λ,v ,

π
(m)
λ,v π

(m)
λ,s = 0, v ̸= s.

Thus, in Case B we have

Theorem 5.2. Let λ ∈ Ik+1, k ∈ N. Then the space D(D) has to be completed to the
space Dk(D), see (5.4). On this space the canonical representation Rλ,m splits into the sum
of two terms: the first term decomposes as Rλ,m does in Case A, the second term decomposes
into the sum of the irreducible representations T−λ−1+v ∼ Tλ−v with v = 0, 1, . . . , k. Namely,
let us assign to any f ∈ Dk(D) the family {F (m)

λ,σ } where σ = −1/2 + iρ, σ = n,

n = 0, 1, . . . , |m| − 1, and σ = −λ − 1 + v, v = 0, 1, . . . , k. This correspondence is G -
equivariant. The function f is recovered by the inversion formula (5.3).

Case C: λ ∈ I−k−1, k ∈ N. Now we perform analytic continuation of (5.2) to the left,
to the strip I−k−1. Here the poles

σ = −λ− 2− v, σ = λ+ 1 + v, v ∈ N, v 6 k,

of the integrand (they are poles of the Fourier transform) intersect the line of integration
Reσ = −1/2 and give additional terms. We obtain

f =

∫ ∞

−∞
+

|m|−1∑
n=0

+
k∑

v=0

Π
(m)
λ,v (f), (5.5)
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where the integral and the first sum have the same meaming as in (5.2) and

Π
(m)
λ,v = (−1)m

1

a−m(λ+ 1 + v)
P

(m)
λ,λ+1+v ◦ ξ

(m)
λ,v .

Denote by P(m)
λ,v the image of the operator P

(m)
λ,λ+1+v. The operators Π

(m)
λ,v with v 6 k can

be extended to the space Tk(D) since the operators b
(m)
λ,v with v 6 k are defined on this

space. In particular, Π
(m)
λ,v can be applied to P(m)

λ,s , s 6 k, and we can consider the products
Π

(m)
λ,v Π

(m)
λ,s with v, s 6 k.

Theorem 5.3. The operators Π
(m)
λ,v , v 6 k, are projection operators on P(m)

λ,v , namely,
the following relations hold:

Π
(m)
λ,v Π

(m)
λ,v = Π

(m)
λ,v ,

Π
(m)
λ,v Π

(m)
λ,s = 0, s ̸= v.

Thus, in Case C we have

Theorem 5.4. Let λ ∈ I−k−1, k ∈ N. Then the canonical representation Rλ,m

considered on the space Tk(D) splits into the sum of two terms. The first term acts on
the subspace of functions f such that their Taylor coefficients cv(f) are equal to zero for
v 6 k, and decomposes as Rλ,m in Case A, the second term decomposes into the direct sum
of the k+1 irreducible representations T−λ−2−v (∼ Tλ+1+v ), v = 0, 1, . . . , k, acting on the
sum of the spaces P(m)

λ,v . One has an inversion formula, see (5.5).

REFERENCES

1. Grosheva L.I. Canonical and boundary representations on the Lobachevsky plane associated
with linear bundles. Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki
– Tambov University Reports. Series: Natural and Technical Sciences, 2017, vol. 22, no. 6,
pp. 1218-1228. DOI: 10.20310/1810-0198-2017-22-6-1218-1228.

2. Molchanov V.F., Grosheva L.I. Canonical and boundary representations on the Lobachevsky
plane. Acta Appl. Math., 2002, vol. 73, pp. 59-77.

3. Grosheva L.I. Kanonicheskie predstavleniya v secheniyakh lineynykh rassloeniy na ploskosti
Lobachevskogo [Canonical representations on sections of linear bundles on the Lobachevsky plane].
Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki – Tambov University
Reports. Series: Natural and Technical Sciences, 2007, vol. 12, no. 4, pp. 436-438. (In Russian).

Received 23 March 2018
Reviewed 25 April 2018
Accepted for press 5 June 2018

Grosheva Larisa Igorevna, Tambov State University named after G. R. Derzhavin, Tambov, the
Russian Federation, Associate Professor of Physics and Mathematics, e-mail: gligli@mail.ru

For citation: Grosheva L.I. Decomposition of canonical representation on the Lobachevsky plane associated with linear
bundless. Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki – Tambov University Reports. Series:
Natural and Technical Sciences, 2018, vol. 23, no. 122, pp. 113–124. DOI: 10.20310/1810-0198-2018-23-122-113-124 (In Engl.,
Abstr. in Russian).



124 L. I. Grosheva

DOI: 10.20310/1810-0198-2018-23-122-113-124
УДК 517.98

РАЗЛОЖЕНИЕ КАНОНИЧЕСКИХ ПРЕДСТАВЛЕНИЙ
НА ПЛОСКОСТИ ЛОБАЧЕВСКОГО

В СЕЧЕНИЯХ ЛИНЕЙНЫХ РАССЛОЕНИЙ

Л. И. Грошева

ФГБОУ ВО «Тамбовский государственный университет им. Г.Р. Державина»
392000, Российская Федерация, г. Тамбов, ул. Интернациональная, 33

E-mail: gligli@mail.ru

Аннотация. Мы разлагаем канонические представления, действующие в сече-
ниях линейных расслоений на плоскости Лобачевского
Ключевые слова: плоскость Лобачевского; канонические представления; обоб-
щенные функции; граничные представления; преобразования Пуассона и Фурье

СПИСОК ЛИТЕРАТУРЫ

1. Grosheva L.I. Canonical and boundary representations on the Lobachevsky plane associated
with linear bundles // Вестник Тамбовского университета. Серия Естественные и технические
науки. Тамбов, 2017. Т. 22. Вып. 6. С. 1218-1228. DOI: 10.20310/1810-0198-2017-22-6-1218-1228.

2. Molchanov V.F., Grosheva L.I. Canonical and boundary representations on the Lobachevsky
plane // Acta Appl. Math. 2002. Vol. 73. P. 59-77.

3. Грошева Л.И. Канонические представления в сечениях линейных расслоений на плоско-
сти Лобачевского // Вестник Тамбовского университета. Серия Естественные и технические
науки. Тамбов, 2007. Т. 12. Вып. 4. С. 436-438.

Поступила в редакцию 23 марта 2018
Прошла рецензирование 25 апреля 2018 г.
Принята в печать 5 июня 2018 г.

Грошева Лариса Игоревна, Тамбовский государственный университет им. Г.Р. Держави-
на, Тамбов, Российская Федерация, кандидат физико-математических наук, доцент, e-mail:
gligli@mail.ru

Для цитирования: Грошева Л.И. Разложение канонических представлений в сечениях линейных расслоений на
плоскости Лобачевского // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2018.
Т. 23. № 122. С. 113–124. DOI: 10.20310/1810-0198-2018-23-122-113-124


