Том 23, № 122

2018

DOI: 10.20310/1810-0198-2018-23-122-113-124

DECOMPOSITION OF CANONICAL REPRESENTATIONS ON THE LOBACHEVSKY PLANE ASSOCIATED WITH LINEAR BUNDLES

© L. I. Grosheva

Tambov State University named after G. R. Derzhavin 33 Internatsionalnaya St., Tambov 392000, Russian Federation E-mail: gligli@mail.ru

Abstract. We decompose canonical representations on the Lobachevsky plane, associated with sections of linear bundles Keywords: Lobachevsky plane; canonical representations; distributions; boundary representations; Poisson and Fourier transforms

Introduction

In our work [1] we described canonical and boundary representations of the group G = SU(1,1) on the Lobachevsky plane D in sections of linear bundles on D. Now we decompose these representations into irreducible ones. We lean on works [2], [3].

1. Representations of SU(1,1) induced by characters of U(1)

The Lobachevsky plane is the unit disk $D : z\overline{z} < 1$ on the complex plane with the linear-fractional action of G:

$$z \mapsto z \cdot g = \frac{az + \overline{b}}{bz + \overline{a}}, \quad g = \left(\begin{array}{cc} a & b \\ \overline{b} & \overline{a} \end{array}\right), \quad a\overline{a} - b\overline{b} = 1.$$

The boundary S of D is the circle $z\overline{z} = 1$, it consists of points $s = \exp i\alpha$, the measure ds on S is $d\alpha$. Let \overline{D} be the closure of $D: \overline{D} = D \cup S$. Let

$$p = 1 - z\overline{z},$$

so that $D = \{p > 0\}$ and $S = \{p = 0\}$. The stabilizer of the point z = 0 is the maximal compact subgroup K = U(1) consisting of diagonal matrices:

$$k = \left(\begin{array}{cc} a & 0\\ 0 & \overline{a} \end{array}\right) \,, \quad a\overline{a} = 1,$$

so that D = G/K. The Euclidean measure dxdy on D is (1/2) dp ds, a G-invariant measure $d\mu(z)$ on D is

$$d\mu(z) = p^{-2} dx dy.$$

If M is a manifold, then $\mathcal{D}(M)$ denotes the Schwartz space of compactly supported infinitely differentiable \mathbb{C} -valued functions on M, with a usual topology, and $\mathcal{D}'(M)$ denotes the space of distributions on M – of antilinear continuous functionals on $\mathcal{D}(M)$.

Recall principal non-unitary series representations of G trivial on the center. Let $\sigma \in \mathbb{C}$. The representation T_{σ} acts on the space $\mathcal{D}(S)$ by

$$(T_{\sigma}(g)\varphi)(s) = \varphi(s \cdot g)|bs + \overline{a}|^{2\sigma}$$

The inner product from $L^2(S, ds)$:

$$\langle \psi, \varphi \rangle_S = \int_S \psi(u) \overline{\varphi(u)} ds(u)$$
 (1.1)

is invariant with respect to the pair $(T_{\sigma}, T_{-\overline{\sigma}-1})$.

If $\sigma \notin \mathbb{Z}$, then T_{σ} is irreducible and equivalent to $T_{-\sigma-1}$ (for $\sigma \in \mathbb{Z}$ there is a "partial equivalence").

The following operator A_{σ} acts on $\mathcal{D}(S)$ and intertwines T_{σ} and $T_{-\sigma-1}$:

$$(A_{\sigma}\varphi)(s) = \int_{S} |1 - s\overline{u}|^{-2\sigma-2} \varphi(u) \, du,$$

exponents $\psi_n(s) = s^n$ are eigenfunctions for A_σ with eigenvalues $a_n(\sigma)$:

$$a_n(\sigma) = 2\pi \, (-1)^n \, \frac{\Gamma(-2\sigma - 1)}{\Gamma(-\sigma + n) \, \Gamma(-\sigma - n)} \, .$$

The composition $A_{\sigma}A_{-\sigma-1}$ is a scalar operator:

$$A_{\sigma}A_{-\sigma-1} = \frac{1}{2\pi\omega(\sigma)} \cdot E$$

where $\omega(\sigma)$ is a "Plancherel measure" (see Theorem 1.1):

$$\omega(\sigma) = \frac{1}{2\pi^2} \left(\sigma + \frac{1}{2}\right) \cot \sigma \pi,$$

The operator A_{σ} is meromorphic in σ with simple poles at $\sigma \in -(1/2) + \mathbb{N}$.

There are four series of unitarizable irreducible representations: the continuous series: T_{σ} , $\sigma = -(1/2) + i\rho$, $\rho \in \mathbb{R}$, an inner product is (1.1); the complementary series: T_{σ} , $-1 < \sigma < 0$, an inner product is the form $\langle A_{\sigma}\psi,\varphi\rangle_S$ with a suitable factor; the holomorphic and antiholomorphic series consisting of subfactors $T_{\sigma,\pm}$ of T_{σ} , $\sigma \in \mathbb{Z}$. We shall use denotation:

$$z^{\mu,m} = |z|^{\mu} \left(\frac{z}{|z|}\right)^m, \quad \mu \in \mathbb{C}, \ m \in \mathbb{Z}.$$

Let us take characters (one dimensional representations) of the group K that are trivial on the center $\pm E$, namely,

$$\omega_m(k) = \overline{a}^{2m} = a^{-2m}, \quad k \in K, \quad m \in \mathbb{Z}.$$

Denote by $U^{(m)}$ the representation of the group G induced by the character ω_m . It acts by translations on the space $\mathcal{D}^{(m)}(G)$ of functions $\psi \in \mathcal{D}(G)$ satisfying the condition $\psi(kg) = \omega_m(k) \psi(g)$. It can be realized on functions on the disk D:

$$\left(U^{(m)}(g)f\right)(z) = f(z \cdot g) \left(bz + \overline{a}\right)^{0,2m}.$$

The representation $U^{(m)}$ moves the Casimir element of the Lie algebra \mathfrak{g} to the Casimir operator (a differential operator on D). Its radial part is the following differential operator on $[1, \infty)$:

$$L_m = (c^2 - 1)\frac{d^2}{dc^2} + 2c\frac{d}{dc} + \frac{2m^2}{c+1}.$$
(1.2)

The representation $U^{(m)}$ preserves the inner product

$$(f, h)_{d\mu} = \int_D f(z) \overline{h(z)} d\mu(z).$$

We denote the unitary completion of $U^{(m)}$ acting on $L^2(D, d\mu)$ by the same symbol.

Let $\mathcal{D}(\overline{D})$ be the space of restrictions to \overline{D} of functions from $\mathcal{D}(\mathbb{C})$ with the induced topology, and by $\mathcal{D}'(\overline{D})$ the space of distributions on \mathbb{C} with supports in \overline{D} . Consider the inner product with respect to the Lebesgue measure on D:

$$\langle F, f \rangle_D = \int_D F(z)\overline{f(z)}dxdy, \quad z = x + iy.$$
 (1.3)

The space $\mathcal{D}(\overline{D})$ can be embedded into $\mathcal{D}'(\overline{D})$ by assigning to $h \in \mathcal{D}(\overline{D})$ the functional $f \mapsto \langle h, f \rangle_D$, $f \in \mathcal{D}(\overline{D})$. So we shall write the value of $F \in \mathcal{D}'(\overline{D})$ at $f \in \mathcal{D}(\overline{D})$ in the same form: $\langle F, f \rangle_S$.

We define the Poisson transform $P_{\sigma}^{(m)}: \mathcal{D}(S) \to C^{\infty}(D)$ and the Fourier transform $F_{\sigma}^{(m)}: \mathcal{D}(D) \to \mathcal{D}(S)$, associated to the character ω_m , as integral operators

$$\left(P_{\sigma}^{(m)}\varphi\right)(z) = p^{-\sigma} \int_{S} (1-s\overline{z})^{2\sigma,-2m} s^{m} \varphi(s) \, ds.$$
$$\left(F_{\sigma}^{(m)}f\right)(s) = s^{-m} \int_{D} (1-s\overline{z})^{2\sigma,2m} p^{-\sigma} f(z) d\mu(z).$$

The Poisson and Fourier transforms $P_{\sigma}^{(m)}$ and $F_{\sigma}^{(m)}$ intertwine representations $T_{-\sigma-1}$ with $U^{(m)}$ and $U^{(m)}$ with T_{σ} respectively. The Poisson and the Fourier transform are conjugate to each other:

$$\langle F_{\sigma}^{(m)}f, \varphi \rangle_{S} = (f, P_{\overline{\sigma}}^{(m)}\varphi)_{d\mu}.$$

Using the spectral resolution of the radial part of the Casimir operator (1.2), we obtain the following Plancherel theorem for $U^{(m)}$.

Theorem 1.1. Let us assign to a function $f \in \mathcal{D}(D)$ the family $\{F_{\sigma}^{(m)} f\}$ where $\sigma = -1/2 + i\rho$, $\rho \in \mathbb{R}$, of its Fourier components of the continuous series and the family $\{F_k^{(m)}, f\}$ where $k = 0, 1, \ldots, |m| - 1$, of its Fourier components of the analytic (if m < 0) or the anti-analytic (if m > 0) series. This correspondence is G-equivariant. One has the inversion formula:

$$f(z) = \int_{-\infty}^{\infty} \omega(\sigma) \left(P_{-\sigma-1}^{(m)} F_{\sigma}^{(m)} f \right)(z) \Big|_{\sigma = -1/2 + i\rho} d\rho + \sum_{k=0}^{|m|-1} \frac{1}{2\pi^2} \left(2k+1 \right) \left(P_{-k-1}^{(m)} F_k^{(m)} f \right)(z),$$

and the Plancherel formula for functions $f, h \in \mathcal{D}(D)$:

$$(f, h)_{d\mu} = \int_{-\infty}^{\infty} \omega(\sigma) \langle F_{\sigma}^{(m)} f, F_{\sigma}^{(m)} h \rangle_{S} |_{\sigma = -1/2 + i\rho} d\rho + \sum_{k=0}^{|m|-1} \frac{1}{2\pi^{2}} \langle F_{k}^{(m)} f, F_{-k-1}^{(m)} h \rangle_{S}.$$
(1.4)

Therefore, the previous correspondence can be extended from the space $\mathcal{D}(S)$ to $L^2(D, d\mu)$ and gives then the decomposition of the unitary representation $U^{(m)}$ on $L^2(D, d\mu)$ into the direct integral of the representations T_{σ} , $\sigma = -1/2 + i\rho$ of the continuous series, and the direct sum of |m| representations $T_{k,+}$ or $T_{k,-}$, $k = 0, 1, \ldots, |m| - 1$, of the analytic (m > 0) or anti-analytic (m > 0) series. This decomposition is multiplicity free.

2. Canonical representations

Let $\lambda \in \mathbb{C}$. We define the *canonical representation* $R_{\lambda,m}$ of the group G associated with a character of K as follows:

$$(R_{\lambda,m}(g)f)(z) = f(z \cdot g)(bz + \overline{a})^{-2\lambda - 4,2m},$$

it acts on the space $\mathcal{D}(\overline{D})$.

The inner product (1.3) is invariant with respect to the pair $(R_{\lambda,m}, R_{-\overline{\lambda}-2,m})$:

$$\langle R_{\lambda,m}(g)f, h \rangle_D = \langle f, R_{-\overline{\lambda}-2,m}(g^{-1})h \rangle_D, \quad g \in G.$$
 (2.1)

Let us define the operator $Q_{\lambda,m}$ – first on $\mathcal{D}(D)$:

$$(Q_{\lambda,m}f)(z) = c(\lambda,m) \int_D (1-z\overline{w})^{2\lambda,2m} f(w) du dv,$$

where

$$c(\lambda,m) = \frac{-\lambda + m - 1}{\pi}$$

It intertwines $R_{\lambda,m}$ and $R_{-\lambda-2,m}$:

$$Q_{\lambda,m} R_{\lambda,m}(g) = R_{-\lambda-2,m}(g) Q_{\lambda,m}, \quad g \in G,$$

and interacts with the form (1.3) as follows:

$$\langle Q_{\lambda,m}f, h \rangle_D = \langle f, Q_{\overline{\lambda},m}h \rangle_D.$$
 (2.2)

The formulae (2.1) and (2.2) allow to extend the representation $R_{\lambda,m}$ and the operator $Q_{\lambda,m}$ to the space $\mathcal{D}'(\overline{D})$ of distributions on \overline{D} .

Canonical representations $R_{\lambda,m}$ generate boundary representations $L_{\lambda,m}$ and $M_{\lambda,m}$. Consider the Taylor series of $f \in \mathcal{D}(\overline{D})$ in powers of p:

$$f(z) \sim a_0 + a_1 p + a_2 p^2 + \cdots,$$

where $a_k = a_k(s)$ are functions in $\mathcal{D}(S)$:

$$a_k(s) = \frac{1}{k!} \left(\frac{\partial}{\partial p}\right)^k \Big|_{p=0} f(z).$$

Let a(f) denote the column (a_0, a_1, \ldots) of the Taylor coefficients.

Denote by $\Sigma_k(\overline{D})$ the space of distributions on \mathbb{C} concentrated at S and of the form

$$\zeta = \varphi_0(s)\,\delta(p) + \varphi_1(s)\,\delta'(p) + \dots + \varphi_k(s)\,\delta^{(k)}(p),$$

where $\delta(p)$ is the Dirac delta function on the real line (being a continuous linear functional on $\mathcal{D}(\mathbb{R})$) and $\delta^{(j)}(p)$ its *j*-th derivative. Set

$$\Sigma(\overline{D}) = \bigcup_{k=0}^{\infty} \Sigma_k(\overline{D}).$$

There is a natural filtration

$$\Sigma_0(\overline{D}) \subset \Sigma_1(\overline{D}) \subset \Sigma_2(\overline{D}) \subset \cdots$$
(2.3)

A distribution $\varphi(s) \,\delta^{(l)}(p)$ acts on a function $f \in \mathcal{D}(\overline{D})$ as follows:

$$\langle \varphi(s) \,\delta^{(l)}(p), \, f \rangle_D = \frac{1}{2} (-1)^l \, l! \, \langle \varphi, \, a_l \rangle_S.$$
(2.4)

Distributions from $\Sigma_k(\overline{D})$ can be extended to a wider space than $\mathcal{D}(\overline{D})$. Namely, let $\mathcal{T}_k(\overline{D})$ be the space of functions f on \overline{D} of class C^{∞} on D and on S and having a Taylor decomposition of order k:

$$f(z) = a_0 + a_1 p + a_2 p^2 + \ldots + a_k p^k + o(p^k)$$

uniformly with respect to $u \in S$, where $a_m = a_m(f)$ belong to $\mathcal{D}(S)$. Then (2.4) is well preserved for $f \in \mathcal{T}_k(\overline{D})$.

The canonical representation $R_{\lambda,m}$ acting on $\mathcal{D}'(\overline{D})$, preserves the space $\Sigma(\overline{D})$ and the filtration (2.3). The first boundary representation $L_{\lambda,m}$ is the restriction of $R_{\lambda,m}$ to $\Sigma(\overline{D})$. The second boundary representation $M_{\lambda,m}$ acts on columns a(f) by:

$$M_{\lambda,m}(g) a(f) = a(R_{\lambda,m}(g)f).$$

Theorem 2.1. The representation $L_{\lambda,m}$ is equivalent to a upper triangular matrix with diagonal $T_{-\lambda-1}, T_{-\lambda}, T_{-\lambda+1}, \ldots$ The equivalence is given by multiplication of the functions $\varphi_k(s)$ by s^{-m} . The representation $M_{\lambda,m}$ is equivalent to a lower triangular matrix with diagonal $T_{-\lambda-2}, T_{-\lambda-3}, \ldots$ The equivalence is given by multiplication of the Taylor coefficients $a_k(s)$ by s^{-m} .

Let $\mathbb{N} = \{0, 1, 2, \ldots\}$. In the generic case: $2\lambda \notin \mathbb{N}$, the representation $L_{\lambda,m}$ is diagonalizable, which means that the space $\Sigma(\overline{D})$ is the direct sum of the spaces $V_{\lambda,k}^{(m)}$ $(k \in \mathbb{N})$, so that $L_{\lambda,m}$ is the direct sum of the $T_{-\lambda-1+k}$ $(k \in \mathbb{N})$.

3. Poisson transform

Let $\lambda, \sigma \in \mathbb{C}$ and $m \in \mathbb{Z}$. We define the Poisson transform associated with the canonical representation $R_{\lambda,m}$ as the map $P_{\lambda,\sigma}^{(m)} : \mathcal{D}(S) \to C^{\infty}(D)$ by the following formula

$$\left(P_{\lambda,\sigma}^{(m)}\varphi\right)(z) = p^{-\lambda-\sigma-2} \int_{S} (1-s\overline{z})^{2\sigma,-2m} s^{m} \varphi(s) \, ds.$$

The Poisson transform $P_{\lambda,\sigma}^{(m)}$ intertwines the representations $T_{-\sigma-1}$ and the canonical representation $R_{\lambda,m}$:

$$R_{\lambda,m}(g) P_{\lambda,\sigma}^{(m)} = P_{\lambda,\sigma}^{(m)} T_{-\sigma-1}(g) \quad (g \in G).$$

With the intertwining operators A_{σ} and $Q_{\lambda,m}$ the Poisson transform interacts as follows:

$$P_{\lambda,\sigma}^{(m)} A_{\sigma} = a_{-m}(\sigma) P_{\lambda,-\sigma-1}^{(m)},$$

$$Q_{\lambda,m} P_{\lambda,\sigma}^{(m)} = \Lambda^{(m)}(\lambda,\sigma) P_{-\lambda-2,\sigma}^{(m)},$$

where

$$\Lambda^{(m)}(\lambda,\sigma) = \frac{\Gamma(-\lambda+\sigma)\,\Gamma(-\lambda-\sigma-1)}{\Gamma(-\lambda-m)\,\Gamma(-\lambda+m-1)}$$

The Poisson transform $P_{\lambda,\sigma}^{(m)}$ is meromorphic in σ , and has poles at the points

$$\sigma = \lambda - k, \quad \sigma = -\lambda - 1 + l \quad (k, l \in \mathbb{N}).$$
(3.1)

All poles are simple except in the case when the two sequences (3.1) have a non-empty intersection and the pole belongs to this intersection. This happens when $2\lambda + 1 \in \mathbb{N}$ and

 $0 \leq k, l \leq 2\lambda + 1, k + l = 2\lambda + 1$. In this case the pole μ is of the second order. Let us write down the principal part of the Laurent series of $P_{\lambda,\sigma}^{(m)}$ at the poles μ of the first order:

$$P_{\lambda,\sigma}^{(m)} = \frac{\widehat{P}_{\lambda,\mu}^{(m)}}{\sigma - \mu} + \cdots .$$

The residue intertwines $T_{-\mu-1}$ with $R_{\lambda,m}$. Let us write it explicitly. We set

$$V_{\sigma,m,n}(p) = (1-p)^{(m+n)/2} F(\sigma+1+m,\sigma+1+n;2\sigma+2;p),$$

where F is the Gauss hypergeometric function. Expand V in powers of p:

$$V_{\sigma,m,n}(p) = \sum_{k=0}^{\infty} w_{\sigma,k}^{(m)}(n) p^k,$$

here $w_{\sigma,k}^{(m)}$ are polynomials in *n* of degree *k*. The coefficients of these polynomials are rational functions of σ with simple poles. Now we set

$$W_{\sigma,k}^{(m)} = w_{\sigma,k}^{(m)} \left(\frac{1}{i} \frac{d}{d\alpha}\right).$$

If a pole μ belongs only to one of the sequences (3.1), then it is simple and

$$\widehat{P}_{\lambda,\lambda-k}^{(m)} = (-1)^{k+m} \frac{1}{k!} a_{-m} (\lambda-k) \xi_{\lambda,k}^{(m)},$$

$$\widehat{P}_{\lambda,-\lambda-1+l}^{(m)} = (-1)^{l+m} \frac{1}{l!} \xi_{\lambda,l}^{(m)} \circ A_{\lambda-l},$$

where $\xi_{\lambda,k}^{(m)}$ is the following operator $\mathcal{D}(S) \to \Sigma_k(\overline{D})$:

$$\xi_{\lambda,k}^{(m)} \varphi = s^m \sum_{n=0}^{k} (-1)^n \frac{k!}{(k-n)!} \left(W_{\lambda-k,n}^{(m)} \varphi \right)(s) \,\delta^{(k-n)}(p).$$
(3.2)

The operator $\xi_{\lambda,k}^{(m)}$ is meromorphic in λ . For fixed k = 1, 2... it has k poles (simple) at the points $\lambda = k - 1, k - 3/2, k - 2, ..., (k - 1)/2$. It intertwines $T_{-\lambda-1+k}$ with $L_{\lambda,m}$ (restricted to $\Sigma_k(\overline{D})$).

Theorem 3.1. Up to a factor, the composition of the operators $Q_{\lambda,m}$ and $\xi_{\lambda,k}^{(m)}$ is the Poisson transform $P_{-\lambda-2,\lambda-k}^{(m)}$:

$$Q_{\lambda,m}\,\xi_{\lambda,k}^{(m)} = q_{\lambda,k}^{(m)} \cdot P_{-\lambda-2,\lambda-k}^{(m)}$$

where

$$q_{\lambda,k}^{(m)} = \frac{1}{2} (-1)^{k+m} k! a_{-m} (-\lambda - 1 + k) \Lambda_k^{(m)}(\lambda),$$
$$\Lambda_k^{(m)}(\lambda) = -\frac{1}{2\pi^2} (2\lambda - 2k + 1) \frac{\Gamma(\lambda + m + 1) \Gamma(\lambda - m + 2)}{k! \Gamma(2\lambda + 2 - k)}.$$

4. Fourier transform

Let $\lambda, \sigma \in \mathbb{C}$ and $m \in \mathbb{Z}$. We define the Fourier transform associated with the canonical representation $R_{\lambda,m}$ as the map $F_{\lambda,\sigma}^{(m)} : \mathcal{D}(\overline{D}) \to \mathcal{D}(S)$ by the following formula

$$\left(F_{\lambda,\sigma}^{(m)}f\right)(s) = s^{-m} \int_D (1-z\overline{s})^{2\sigma,2m} p^{\lambda-\sigma} f(z) dx dy.$$

The integral converges absolutely for $\operatorname{Re}(\lambda - \sigma) > -1$, $\operatorname{Re}(\lambda + \sigma) > -2$ and can be meromorphically continued in σ and λ . The Poisson and the Fourier transform are conjugate to each other:

$$\langle F_{\lambda,\sigma}^{(m)}f,\varphi\rangle_S = \langle f, P_{-\overline{\lambda}-2,\overline{\sigma}}^{(m)}\varphi\rangle_D.$$
 (4.1)

This allows to transfer statements about the Poisson transform to the Fourier transform. The Fourier transform interacts with the intertwining operators as follows:

$$A_{\sigma} F_{\lambda,\sigma}^{(m)} = a_{-m}(\sigma) F_{\lambda,-\sigma-1}^{(m)},$$

$$F_{-\lambda-2,\sigma}^{(m)} Q_{\lambda,m} = \Lambda^{(m)}(\lambda,\sigma) F_{\lambda,\sigma}^{(m)}.$$

It has poles in σ at the points

$$\sigma = -\lambda - 2 - k, \quad \sigma = \lambda + 1 + l \quad (k, l \in \mathbb{N}).$$

$$(4.2)$$

All poles are simple, except the case $-2\lambda - 3 \in \mathbb{N}$ and the pole μ belongs to both sequences (4.2), i. e. $0 \leq k, l \leq -2\lambda - 3$ and $k + l = -2\lambda - 3$. In this case μ is of the second order. For the Laurent coefficients of the Fourier transform we use a similar notation as in case of the Poisson transform. The first Laurent coefficient $\widehat{F}_{\lambda,\mu}^{(m)}$ for the first order μ intertwines $R_{\lambda,m}$ with T_{μ} . Let us write it explicitly:

$$\widehat{F}_{\lambda,-\lambda-2-k}^{(m)} = \frac{1}{2} (-1)^m a_{-m} (-\lambda - 2 - k) b_{\lambda,k}^{(m)},
\widehat{F}_{\lambda,\lambda+1+l}^{(m)} = -\frac{1}{2} (-1)^m A_{-\lambda-2-l} b_{\lambda,l}^{(m)},$$

where $b_{\lambda,k}^{(m)}$ is a "boundary" operator $\mathcal{D}(\overline{D}) \to \mathcal{D}(S)$ which is defined in terms of the Taylor coefficients c_n of f as follows:

$$b_{\lambda,k}^{(m)}(f) = \sum_{n=0}^{k} W_{-\lambda-2-k,k-n}^{(m)} \left(s^{-m} c_n \right).$$

The operators $\xi^{(m)}$ and $b^{(m)}$ are conjugate to each other (up to a factor):

$$\langle f, \xi_{-\overline{\lambda}-2,k}^{(m)} \varphi \rangle_D = \frac{1}{2} (-1)^k k! \langle b_{\lambda,k}^{(m)}(f), \varphi \rangle_S.$$

The operator $b_{\lambda,k}^{(m)}$ intertwines $R_{\lambda,m}$ with $T_{-\lambda-2-k}$. It is meromorphic in λ . It has k poles (simple) at the points $\lambda = -k - 1, -k - 1/2, \dots, (-k - 3)/2$.

5. Decomposition of canonical representations

For simplicity we restrict ourselves to generic λ lying in the strips I_k , $(k \in \mathbb{Z})$.

$$-3/2 + k < \operatorname{Re} \lambda < -1/2 + k.$$

Case A: $\lambda \in I_0$. Let $f, h \in \mathcal{D}(\overline{D})$. Consider the functions

$$f_0(z) = p^{\lambda+2} f(z), \quad h_0(z) = p^{-\overline{\lambda}} h(z).$$

Since $\lambda \in I_0$, both functions $f_0(z)$ and $h_0(z)$ belong to $L^2(D, d\mu)$. Let us apply to this pair of functions f_0 , h_0 the Plancherel formula (1.19). We obtain:

$$(f_0, h_0)_{d\mu} = \int_{-\infty}^{\infty} \omega(\sigma) \langle F_{\sigma}^{(m)} f_0, F_{-\overline{\sigma}-1}^{(m)} h_0 \rangle_S \Big|_{\sigma = -1/2 + i\rho} d\rho + \sum_{n=0}^{|m|-1} \frac{1}{2\pi^2} (2n+1) \langle F_n^{(m)} f_0, F_{-n-1}^{(m)} h_0 \rangle_S.$$

Then we return to f and h:

$$(f, h)_{D} = \int_{-\infty}^{\infty} \omega(\sigma) \langle F_{\lambda,\sigma}^{(m)} f, F_{-\overline{\lambda}-2,-\overline{\sigma}-1}^{(m)} h \rangle_{S} \Big|_{\sigma=-1/2+i\rho} d\rho + \sum_{n=0}^{|m|-1} \frac{1}{2\pi^{2}} (2n+1) \langle F_{\lambda,n}^{(m)} f, F_{-\overline{\lambda}-2,-n-1}^{(m)} h \rangle_{S}.$$
(5.1)

Now using the conjugacy (4.1), we transfer the Fourier transform of h to the Poisson transform of $F_{\lambda,\sigma}^{(m)}f$. We obtain a formula that gives an expansion of f regarded as a distribution in $\mathcal{D}'(\overline{D})$:

$$f = \int_{-\infty}^{\infty} \omega(\sigma) P_{\lambda,-\sigma-1}^{(m)} F_{\lambda,\sigma}^{(m)} f \Big|_{\sigma=-1/2+i\rho} d\rho + \sum_{n=0}^{|m|-1} \frac{1}{2\pi^2} (2n+1) P_{\lambda,-n-1}^{(m)} F_{\lambda,n}^{(m)} f.$$
(5.2)

Theorem 5.1. Let $\lambda \in I_0$. Then the canonical representation $R_{\lambda,m}$ decomposes, in a similar way as $U^{(m)}$, see § 1, into the direct integral of the representations T_{σ} , $\sigma = -1/2 + i\rho$, of the continuous series and the direct sum of |m| representations $T_{n,+}$ or $T_{n,-}$, $n = 0, 1, \ldots, |m| - 1$, of the analytic (m < 0) or the anti-analytic series (m > 0)with multiplicity one. Namely, if we assign to $f \in \mathcal{D}(\overline{D})$ the family of Fourier components $\{F_{\lambda,\sigma}^{(m)}f\}$ where $\sigma = -1/2 + i\rho$ and $\sigma \in \{0, 1, \ldots, |m| - 1\}$, then this correspondence is G-equivariant. There is an inversion formula (5.2) and a decomposition (5.1) of the form $(f, h)_D$. **Case B:** $\lambda \in I_{k+1}$, $k \in \mathbb{N}$. We perform analytic continuation of (5.2) from the strip I_0 to the right, to the strip I_{k+1} . Here the poles of the Poisson transform intersect the line of integration $\operatorname{Re} \sigma = -1/2$ and give additional terms. We obtain

$$f = \int_{-\infty}^{\infty} + \sum_{n=0}^{|m|-1} + \sum_{\nu=0}^{k} \pi_{\lambda,\nu}^{(m)}(f), \qquad (5.3)$$

where the integral and the first sum mean the same as in (5.2) and

$$\pi_{\lambda,v}^{(m)} = 2 \, (-1)^{v+m} \, \frac{1}{v!} \, \frac{1}{a_{-m}(-\lambda - 1 + v)} \, \xi_{\lambda,v}^{(m)} \circ F_{\lambda,-\lambda - 1 + v}^{(m)}.$$

The operators $\pi_{\lambda,v}^{(m)}$, $v \leq k$, can be extended to $\Sigma_k(\overline{D})$, because the Fourier transforms occuring in $\pi_{\lambda,v}^{(m)}$ are already extended. Thus, the operators $\pi_{\lambda,v}^{(m)}$, $v \leq k$, are defined on the space

$$\mathcal{D}_k(\overline{D}) = \mathcal{D}(\overline{D}) + \Sigma_k(\overline{D}). \tag{5.4}$$

The operators $\pi_{\lambda,v}^{(m)}$, $v \leq k$, acting on the space $\mathcal{D}_k(\overline{D})$, are projection operators onto the spaces $V_{\lambda,v}^{(m)}$, see § 2 for them, i.e. the following relations hold:

$$\begin{aligned} \pi_{\lambda,v}^{(m)} & \pi_{\lambda,v}^{(m)} &= \pi_{\lambda,v}^{(m)}, \\ \pi_{\lambda,v}^{(m)} & \pi_{\lambda,s}^{(m)} &= 0, \quad v \neq s \end{aligned}$$

Thus, in Case B we have

Theorem 5.2. Let $\lambda \in I_{k+1}$, $k \in \mathbb{N}$. Then the space $\mathcal{D}(\overline{D})$ has to be completed to the space $\mathcal{D}_k(\overline{D})$, see (5.4). On this space the canonical representation $R_{\lambda,m}$ splits into the sum of two terms: the first term decomposes as $R_{\lambda,m}$ does in Case A, the second term decomposes into the sum of the irreducible representations $T_{-\lambda-1+\nu} \sim T_{\lambda-\nu}$ with $\nu = 0, 1, \ldots, k$. Namely, let us assign to any $f \in \mathcal{D}_k(\overline{D})$ the family $\{F_{\lambda,\sigma}^{(m)}\}$ where $\sigma = -1/2 + i\rho$, $\sigma = n$, $n = 0, 1, \ldots, |m| - 1$, and $\sigma = -\lambda - 1 + \nu$, $\nu = 0, 1, \ldots, k$. This correspondence is G-equivariant. The function f is recovered by the inversion formula (5.3).

Case C: $\lambda \in I_{-k-1}, k \in \mathbb{N}$. Now we perform analytic continuation of (5.2) to the left, to the strip I_{-k-1} . Here the poles

$$\sigma = -\lambda - 2 - v, \ \sigma = \lambda + 1 + v, \ v \in \mathbb{N}, \ v \leqslant k,$$

of the integrand (they are poles of the Fourier transform) intersect the line of integration $\operatorname{Re} \sigma = -1/2$ and give additional terms. We obtain

$$f = \int_{-\infty}^{\infty} + \sum_{n=0}^{|m|-1} + \sum_{\nu=0}^{k} \Pi_{\lambda,\nu}^{(m)}(f),$$
(5.5)

where the integral and the first sum have the same meaning as in (5.2) and

$$\Pi_{\lambda,v}^{(m)} = (-1)^m \, \frac{1}{a_{-m}(\lambda+1+v)} \, P_{\lambda,\lambda+1+v}^{(m)} \circ \xi_{\lambda,v}^{(m)}.$$

Denote by $\mathcal{P}_{\lambda,v}^{(m)}$ the image of the operator $P_{\lambda,\lambda+1+v}^{(m)}$. The operators $\Pi_{\lambda,v}^{(m)}$ with $v \leq k$ can be extended to the space $\mathcal{T}_k(\overline{D})$ since the operators $b_{\lambda,v}^{(m)}$ with $v \leq k$ are defined on this space. In particular, $\Pi_{\lambda,v}^{(m)}$ can be applied to $\mathcal{P}_{\lambda,s}^{(m)}$, $s \leq k$, and we can consider the products $\Pi_{\lambda,v}^{(m)} \Pi_{\lambda,s}^{(m)}$ with $v, s \leq k$.

Theorem 5.3. The operators $\Pi_{\lambda,v}^{(m)}$, $v \leq k$, are projection operators on $\mathcal{P}_{\lambda,v}^{(m)}$, namely, the following relations hold:

$$\Pi_{\lambda,v}^{(m)} \Pi_{\lambda,v}^{(m)} = \Pi_{\lambda,v}^{(m)},$$

$$\Pi_{\lambda,v}^{(m)} \Pi_{\lambda,s}^{(m)} = 0, \quad s \neq v$$

Thus, in Case C we have

Theorem 5.4. Let $\lambda \in I_{-k-1}$, $k \in \mathbb{N}$. Then the canonical representation $R_{\lambda,m}$ considered on the space $\mathcal{T}_k(\overline{D})$ splits into the sum of two terms. The first term acts on the subspace of functions f such that their Taylor coefficients $c_v(f)$ are equal to zero for $v \leq k$, and decomposes as $R_{\lambda,m}$ in Case A, the second term decomposes into the direct sum of the k+1 irreducible representations $T_{-\lambda-2-v}$ ($\sim T_{\lambda+1+v}$), $v = 0, 1, \ldots, k$, acting on the sum of the spaces $\mathcal{P}_{\lambda,v}^{(m)}$. One has an inversion formula, see (5.5).

REFERENCES

 Grosheva L.I. Canonical and boundary representations on the Lobachevsky plane associated with linear bundles. Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki – Tambov University Reports. Series: Natural and Technical Sciences, 2017, vol. 22, no. 6, pp. 1218-1228. DOI: 10.20310/1810-0198-2017-22-6-1218-1228.

2. Molchanov V.F., Grosheva L.I. Canonical and boundary representations on the Lobachevsky plane. *Acta Appl. Math.*, 2002, vol. 73, pp. 59-77.

3. Grosheva L.I. Kanonicheskie predstavleniya v secheniyakh lineynykh rassloeniy na ploskosti Lobachevskogo [Canonical representations on sections of linear bundles on the Lobachevsky plane]. Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki – Tambov University Reports. Series: Natural and Technical Sciences, 2007, vol. 12, no. 4, pp. 436-438. (In Russian).

Received 23 March 2018 Reviewed 25 April 2018 Accepted for press 5 June 2018

Grosheva Larisa Igorevna, Tambov State University named after G. R. Derzhavin, Tambov, the Russian Federation, Associate Professor of Physics and Mathematics, e-mail: gligli@mail.ru

For citation: Grosheva L.I. Decomposition of canonical representation on the Lobachevsky plane associated with linear bundless. Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki – Tambov University Reports. Series: Natural and Technical Sciences, 2018, vol. 23, no. 122, pp. 113–124. DOI: 10.20310/1810-0198-2018-23-122-113-124 (In Engl., Abstr. in Russian).

DOI: 10.20310/1810-0198-2018-23-122-113-124 УДК 517.98

РАЗЛОЖЕНИЕ КАНОНИЧЕСКИХ ПРЕДСТАВЛЕНИЙ НА ПЛОСКОСТИ ЛОБАЧЕВСКОГО В СЕЧЕНИЯХ ЛИНЕЙНЫХ РАССЛОЕНИЙ

Л. И. Грошева

ФГБОУ ВО «Тамбовский государственный университет им. Г.Р. Державина» 392000, Российская Федерация, г. Тамбов, ул. Интернациональная, 33 E-mail: gligli@mail.ru

Аннотация. Мы разлагаем канонические представления, действующие в сечениях линейных расслоений на плоскости Лобачевского Ключевые слова: плоскость Лобачевского; канонические представления; обобщенные функции; граничные представления; преобразования Пуассона и Фурье

СПИСОК ЛИТЕРАТУРЫ

1. Grosheva L.I. Canonical and boundary representations on the Lobachevsky plane associated with linear bundles // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2017. Т. 22. Вып. 6. С. 1218-1228. DOI: 10.20310/1810-0198-2017-22-6-1218-1228.

2. Molchanov V.F., Grosheva L.I. Canonical and boundary representations on the Lobachevsky plane // Acta Appl. Math. 2002. Vol. 73. P. 59-77.

3. Грошева Л.И. Канонические представления в сечениях линейных расслоений на плоскости Лобачевского // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2007. Т. 12. Вып. 4. С. 436-438.

Поступила в редакцию 23 марта 2018 Прошла рецензирование 25 апреля 2018 г. Принята в печать 5 июня 2018 г.

Грошева Лариса Игоревна, Тамбовский государственный университет им. Г.Р. Державина, Тамбов, Российская Федерация, кандидат физико-математических наук, доцент, e-mail: gligli@mail.ru

Для цитирования: Грошева Л.И. Разложение канонических представлений в сечениях линейных расслоений на плоскости Лобачевского // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2018. Т. 23. № 122. С. 113–124. DOI: 10.20310/1810-0198-2018-23-122-113-124